
Neural QBAFs: Explaining Neural
Networks Under LRP-Based
Argumentation Frameworks

Purin Sukpanichnant(B), Antonio Rago, Piyawat Lertvittayakumjorn,
and Francesca Toni

Imperial College London, London, UK
{ps1620,a.rago,pl1515,ft}@imperial.ac.uk

Abstract. In recent years, there have been many attempts to combine
XAI with the field of symbolic AI in order to generate explanations for
neural networks that are more interpretable and better align with human
reasoning, with one prominent candidate for this synergy being the sub-
field of computational argumentation. One method is to represent neural
networks with quantitative bipolar argumentation frameworks (QBAFs)
equipped with a particular semantics. The resulting QBAF can then be
viewed as an explanation for the associated neural network. In this paper,
we explore a novel LRP-based semantics under a new QBAF variant,
namely neural QBAFs (nQBAFs). Since an nQBAF of a neural network
is typically large, the nQBAF must be simplified before being used as an
explanation. Our empirical evaluation indicates that the manner of this
simplification is all important for the quality of the resulting explanation.

Keywords: Neural networks · Computational argumentation · Image
classification

1 Introduction

Several attempts have been made to improve explainability of AI systems. One
prominent research area of XAI is devoted to explaining black-box methods
such as deep learning. A popular method from this area is Layer-wise Rele-
vance Propagation (LRP) [11]. This method determines how relevant nodes in
a neural network are towards the neural network output. However, LRP does
not explicitly indicate the relationship between each node. To address this issue,
we combine this method with computational argumentation. This is a field of
study about how knowledge can be represented as relationships between argu-
ments. Each complete set of relationship(s) is referred to as an Argumentation
Framework (AF) [6]. There are several types of AF, depending on types of rela-
tionships. In this paper, we consider a type of AF known as Quantitative Bipolar
Argumentation Frameworks (QBAFs) [2], which is a form of knowledge repre-
sentation displaying relationships between arguments in forms of support and
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attack. These attacks and supports lend themselves well to represent negative
and positive influences from input features as obtained using LRP.

QBAFs are interpreted by semantics which, in a nutshell, determine the
arguments’ dialectical strengths, taking into account (the dialectical strength
of) their attackers and supporters.

As QBAFs illustrate how arguments relate to one another, they can be
applied to reflect the relationship between nodes of a neural network, which
can be viewed as an explanation. However, to do this, one needs to match the
neural network functioning and the QBAF semantics. In this paper, we focus on
LRP as a semantics for suitable forms of the QBAFs that we introduce. QBAFs
derived by an LRP-based semantics may be very large and too complicated for
human cognition in the context of explanation. Hence a new variant of QBAF
is needed. To address this issue, we introduce a new variant of QBAF, namely
neural QBAFs (nQBAFs), under LRP-based semantics for generating argumen-
tative explanations from neural networks and prove their dialectical properties.
Finally, we conduct some preliminary experiments by applying our LRP-based
semantics to the Deep Argumentative Explanation (DAX) method from [1] and
the method from [13] in order to show practical issues with nQBAFs as explana-
tions. This is work in progress, on exploring the use of LRP, in combination with
other techniques, in visualisation for image classification: we leave a comparison
with visualisations drawn from nQBAFs as future work.

2 Background

We start by defining relevant concepts for our setting. These amount to multi-
layer perceptrons (MLPs), Layer-wise Relevance Propagation (LRP) and Quan-
titative Bipolar Argumentation Frameworks (QBAFs).

2.1 MLP Basics

A MLP is a form of feed-forward neural network where all neurons in one layer
are connected to all neurons in the next layer. We follow [14] for background on
MLPs, captured by Definitions 1 and 2 below.

Definition 1. A Multi-layer Perceptron (MLP) is a tuple 〈V,E,B, θ〉 where

– 〈V,E〉 is an acyclic directed graph.
– V = �d+1

0 Vi is the disjoint union of sets of nodes Vi;
– We call V0 the input layer, Vd+1 the output layer and Vi the i-th hidden layer

for 1 ≤ i ≤ d;
– E ⊆ ⋃d

i=0(Vi × Vi+1) is a set of edges between subsequent layers;
– B : (V \ V0) → R assigns a bias to every non-input node;
– θ : E → R assigns a weight to every edge.
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Figure 1 (left) visualises a fragment of an MLP with at least two hidden layers.
Note that any MLP referred to afterwards only has one output node. This may
be obtained by extracting all nodes and the edges between these nodes from
another MLP that have paths1 to the chosen output node, including the output
node itself.

MLPs typically result from training with sample data. Since this training is
not a focus of this paper, we will simply assume that a trained MLP is available.
For example, in Sect. 5, we will conduct experiments with a pre-trained MLP for
image classification.

The next definition explains how we obtain an activation value for each node.

Definition 2. For any j ∈ V0, the activation xj ∈ R of node j is an input
value for j. For any k such that 1 ≤ k ≤ d + 1, the activation of node i ∈ Vk is
xi = act(B(i) + Σn∈Vk−1xnθ(n, i)) where act: R → R is an activation function.2

Activations are a fundamental component of a neural network. They are
involved in the calculation process of a neural network from a given input towards
the output layer. An activation of each node can also be used to explain what
the neural network is emphasising, as we discuss in the next section.

2.2 LRP Basics

Layer-Wise Relevance Propagation (LRP) [11] is a method for obtaining expla-
nations, for outputs of MLPs in particular. Intuitively, with LRP, each node of
the MLP is given a relevance score, showing how this node contributes to the
node of interest in the output layer. Starting from the output layer, the node we
want to explain has its relevance score equal to its activation while other nodes
of the output layer (if any) have zero relevance score. Then we can calculate the
relevance score for each non-output node using Definition 3, adapted from the
presentation of LRP in [9].

Definition 3. Let 〈V,E,B, θ〉 be an MLP, and i ∈ Vk, and j ∈ Vk+1 where
0 ≤ k ≤ d, and the layer k has n nodes. Then the relevance score the node i
receives from the node j is Ri←j such that Ri←j = zij

Σn
l=1zlj

Rj where zij is the

contribution from i to j during the forward pass, i.e., zij = xiθ(i, j) + B(j)
n + ε

n
where ε ∈ R is a small positive stabiliser.

Note that this definition assumes that ε is distributed equally to the n nodes:
we adopt this assumption from [9]. To calculate the relevance score node i has
towards the output node of interest, i.e. Ri, we simply sum all the relevance scores
it receives from all the nodes of the layer k + 1. In other words, Ri = ΣjRi←j .

From Definition 3, we obtain also that LRP has conservative properties (for
i ∈ Vk, and j ∈ Vk+1), i.e., Rj = ΣiRi←j and ΣiRi = ΣjRj .
1 The definition of path is adopted from [1], where there exists a path via E (set of

edges) from na to nb (from a node to another) iff ∃n1, ..., nt with n1 = na and
nt = nb such that (n1, n2), ..., (nt−1, nt) ∈ E.

2 Note that, with an abuse of notation, θ(n, i) stands for θ((n, i)), for simplicity.
Unless explicitly stated, this notation is used throughout the rest of the paper.
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2.3 QBAF Basics

QBAFs [2] are abstractions of debates between arguments, where arguments
may attack or support one another and are equipped with a base score, which
reflects the arguments’ intrinsic, initial dialectical strength. We adopt the formal
definition of QBAFs from [2].

Definition 4. A QBAF is a tuple 〈A,Att, Supp, γ〉 where

– A is a set (whose elements are referred to as arguments);
– Att ⊆ A × A is the attack relation;
– Supp ⊆ A × A is the support relation;
– γ : A → D is a function that maps every argument to its base score (from

some set D of a given set of values).3

A QBAF may be equipped with a notion of dialectical strength, given by
a strength function σ : A → D, indicating a dialectical strength value (again
from D) for each argument, taking into account the strength of the attacking
and supporting arguments within the debate represented by the QBAF, as well
as the argument’s intrinsic strength given by γ. Several notions of σ (called
semantics in the literature on computational argumentation) have been given
in the literature (e.g. see [3]) but their formal definitions are outside the scope
of this paper. Various dialectical properties for semantics σ have been studied
in the literature (e.g. see [3]) as a way to validate their use in concrete settings
and to compare across different semantics. We will follow this approach in this
paper.

Variants of QBAFs can be extracted from neural networks, e.g. as in [1,14].
An example of the structure underpinning these QBAFs is given in Fig. 1 (centre,
for the MLP on the left): here, the nodes represent the arguments and the
edges represent the union of the attack and support relations. In these works,
the extracted QBAF can be seen as indicating how some nodes in the neural
network relate to others, and hence can be viewed as an explanation of that
neural network. We follow this approach in this paper, but using a variant of
QBAFs, defined next.

3 nQBAFS and LRP-Based Argumentation Semantics

We study LRP as a semantics σ for novel forms of QBAFs extracted from MLPs.
We aim to prove that this LRP-based semantics satisfies multiple dialectical
properties, which we believe are intuitive when QBAFs are used as the basis for
explanations of MLPs.

The novel QBAFs take into account the structure of MLPs. As of Definition 3,
a non-output node in an MLP may contribute to several nodes of the next layer,
as in Fig. 1 (left). For any non-output node i, if we consider each edge from i to a
node of the next layer and represent the node i with a unique argument for every

3 In this paper, we will choose D = R.
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Fig. 1. Example of an MLP (left), a standard QBAF (centre) and the associated
nQBAF (right). Each box refers to a group of arguments. In the QBAF and the nQBAF,
dashed lines represent attacks and solid lines represent supports.

edge (as in [4,14]), there would be several arguments representing that node i.
This method would also be non-scalable since the relation between arguments
in the resulting QBAF would become too complex to analyse as more layers
are considered. To avoid this, we define a new, leaner form of QBAFs, where
arguments referring to the same node are grouped together.

Definition 5. A neural quantitative bipolar argumentation framework
(nQBAF) is a tuple 〈A,Att, Supp, γ〉 where

– A is a set (of arguments);
– Att ⊆ A × P(A)4 is the attack relation;
– Supp ⊆ A × P(A) is the support relation;
– γ : A ∪ P(A) → {0} is a function that maps every argument and set of

arguments to a fixed base score of zero.

Thus, attack and support relations may exist not just between arguments, as
in standard QBAFs, but also between arguments and sets thereof. Given that we
choose D = R as the set of values that could be used as base score and strength
of arguments, the choice of γ indicates that each argument and set of arguments
starts with a “neutral” base score of zero.

We first need to relate arguments of an nQBAF and nodes of a given MLP
〈V,E,B, θ〉. Each argument represents only one node but a node can be repre-
sented by several arguments. Accordingly, we assume a function ρ : A∪P(A) →
V ∪ {⊥} mapping each argument/set of arguments to a node of the MLP,
if one exists (or mapping to ⊥ otherwise). We omit the formal definition of
ρ for lack of space. As an illustration, for the MLP in Fig. 1 (left), in the
derived nQBAF (right), n1 = ρ(α12) = ρ(α13) = ρ(α14) = ρ({α12, α13, α14}),
n2 = ρ(α25) = ρ(α26) = ρ({α25, α26}), n3 = ρ(α35) = ρ(α36) = ρ({α35, α36}),
n4 = ρ(α45) = ρ(α46) = ρ({α45, α46}), n5 = ρ(α5) = ρ({α5}), n6 = ρ(α6) =
ρ({α6}), n0 = ρ(α0) = ρ({α0}) and, for any other set S of arguments, ρ(S) = ⊥.

4 Note that P(A) is the power set of a set A.
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Algorithm 1: Extracting A from an MLP with the output node α0

A ← {α0};
currentLayer ← d;
while currentLayer >= 0 do

for ni in VcurrentLayer do
for nj in VcurrentLayer+1 do

if (ni, nj) in E then
A ← A ∪ {αij}

currentLayer ← currentLayer − 1
for αmn in A do

if ρ(αmn) in V0 then
A ← A ∪ {α(mn)′mn}

We then have to determine which pairs (i.e. edges as shown in Fig. 1 (right))
belong to the attack or support relations. This is done using two relation char-
acterisations, inspired by those in [1]: c+, c− : A × P(A) → {true, false} where,
for any argument i and group of arguments j such that ρ(i) �= ⊥ and ρ(j) �= ⊥
are in adjacent layers (i.e. (ρ(i), ρ(j)) ∈ E):

– c+(i, j) is true iff Rρ(i)←ρ(j) > 0, and
– c−(i, j) is true iff Rρ(i)←ρ(j) < 0.

With c+ and c−, we can formally define our Att and Supp relations and the
nQBAF derived from an MLP, as follows:

Definition 6. The nQBAF derived from 〈V,E,B, θ〉 is 〈A,Att,Supp,γ〉 where

– A is defined according to Algorithm 1;
– Att = {(i, j) ∈ A × P(A) | c−(i, j) is true};
– Supp = {(i, j) ∈ A × P(A) | c+(i, j) is true};
– γ : A ∪ P(A) → {0}.

Algorithm 1 extracts the set of arguments by iterating backwards from the
last hidden layer to the input layer. It also add imaginary arguments to the set
of arguments for input nodes, for the reason discussed in the next section.

Before we define our strength function , let us introduce some notation:

– Att(x) = {a ∈ A | (a, x) ∈ Att } for all x ∈ P(A);
– Supp(x) = {s ∈ A | (s, x) ∈ Supp } for all x ∈ P(A);
– G = {g ∈ P(A) | ∃a ∈ A[(a, g) ∈ Att ∨ (a, g) ∈ Supp]}.

Now we define the LRP-based semantics for our nQBAF as follows:

Definition 7. The LRP-based semantics of the nQBAF derived from an MLP
〈V,E,B, θ〉 is σ : A ∪ G → R such that
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σ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xi if ρ(x) ∈ Vd+1 with final activation xi

Rm←ρ(y) if x = α(mn)′mn, z = αmn and ∃!(z, y) ∈ Att ∪ Supp

Rρ(x)←ρ(y) if ∃!(x, y) ∈ Att ∪ Supp

Σa∈xσ(a) if x ∈ G
0 otherwise

Now we are able to conceive the relations between arguments, and to what
amount each argument supports or attacks a group of arguments, but how natural
is it? Does it follow the way humans naturally debate? To answer these questions,
we have to consider whether our nQBAFs satisfy dialectical properties.

4 Properties for nQBAFS Under LRP Semantics

We now consider dialectical properties that determine how natural the argumenta-
tion is for any argumentation framework, i.e. how similar it is to human reasoning
and debate. Our dialectical properties, as shown in Table 1, are based on those in
[1] and [2] but are adapted specifically for nQBAFs. In the table, we associate these
properties with names, mostly borrowing from the literature, where, however, they
have been used for other types of argumentation frameworks.

Before defining the properties, we first make an addition regarding the input
layer. Every dialectical property which follows considers the strength of a group of
arguments based on its attackers and supporters. As of now, there are no attackers
or supporters for groups of arguments representing nodes of the input layer, so it
is likely most properties will not be satisfied here. To resolve this issue, we add
imaginary arguments to target the input nodes. These added arguments are not
considered as part of the set of all groups of arguments G. Formally, for any g ∈ G
such that ρ(g) ∈ V0, Att(g) = {x ∈ A | ρ(x) = ⊥ ∧ ∃a ∈ g[σ(x) = σ(a) ∧ σ(x) <
0]} and Supp(g) = {x ∈ A | ρ(x) = ⊥ ∧ ∃a ∈ g[σ(x) = σ(a) ∧ σ(x) > 0]} and
|Att(g)∪Supp(g)| = |g|. For example, a given input node may be represented by a
group of arguments {αi, . . . , αn} and has a set of supporting/attacking arguments
{αci, . . . , αcn} corresponding to each argument of the group.

According to Table 1, to explain, Additive Monotonicity requires that the
strength of a group of arguments is the sum of that of its supporters and attack-
ers. Balance requires that the strength of a group of arguments differs from the
sum of base scores of that group only if such a group is a target of other argu-
ments. Weakening requires that when there are no supporters but at least one
attacker, the strength of a group of arguments is lower than the total sum of
base scores of that group. Conversely, Strengthening considers the situation when
there are no attackers but at least one supporter instead. Weakening Soundness
is loosely the opposite direction of Weakening, requiring that if the strength of
a group of arguments is lower than the sum of base scores of that group, then
the group must have at least one attacker. Similarly, Strengthening Soundness is
loosely the opposite direction of Strengthening. Equivalence states that groups
of arguments with equal conditions in terms of attackers, supporters and the
sum of base scores within a group have the same strength. Attack Counting
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Table 1. Dialectical properties for nQBAFs adapted from [1] and [2] where G represents
the set of all groups of arguments in the argumentation framework.

# Property Name

1 ∀g ∈ G, σ(g) = Σx∈Att(g)ρ(x) + Σx∈Supp(g)ρ(x) Additive Monotonicity

2 ∀g ∈ G, Att(g) = ∅ ∧ Supp(g) = ∅ → σ(g) = Σx∈gγ(x) Balance

3 ∀g ∈ G, Att(g) 	= ∅ ∧ Supp(g) = ∅ → σ(g) < Σx∈gγ(x) Weakening

4 ∀g ∈ G, Att(g) = ∅ ∧ Supp(g) 	= ∅ → σ(g) > Σx∈gγ(x) Strengthening

5 ∀g ∈ G, σ(g) < Σx∈gγ(x) → Att(g) 	= ∅ Weakening Soundness

6 ∀g ∈ G, σ(g) > Σx∈gγ(x) → Supp(g) 	= ∅ Strengthening Soundness

7 ∀g1, g2 ∈ G, Att(g1) = Att(g2) ∧ Supp(g1) =

Supp(g2) ∧ Σx∈g1γ(x) = Σx∈g2γ(x) → σ(g1) = σ(g2)

Equivalence

8 ∀g1, g2 ∈ G, Att(g1) ⊂ Att(g2) ∧ Supp(g1) =

Supp(g2) ∧ Σx∈g1γ(x) = Σx∈g2γ(x) → σ(g2) < σ(g1)

Attack Counting

9 ∀g1, g2 ∈ G, Supp(g1) ⊂ Supp(g2) ∧ Att(g1) =

Att(g2) ∧ Σx∈g1γ(x) = Σx∈g2γ(x) → σ(g1) < σ(g2)

Support Counting

10 ∀g1, g2 ∈ G, Att(g1) = Att(g2) ∧ Supp(g1) =

Supp(g2) ∧ Σx∈g1γ(x) > Σx∈g2γ(x) → σ(g1) > σ(g2)

Base Score Reinforcement

11 ∀g1, g2 ∈ G, g1 <a g2 ∧ Supp(g1) = Supp(g2) ∧ Σx∈g1γ(x) =

Σx∈g2γ(x) → σ(g1) > σ(g2)

Attack Reinforcement

12 ∀g1, g2 ∈ G, Att(g1) = Att(g2) ∧ g1 >s g2 ∧ Σx∈g1γ(x) =

Σx∈g2γ(x) → σ(g1) > σ(g2)

Support Reinforcement

(Support Counting) requires that a strictly larger set of attackers (supporters,
respectively) determines a lower (higher, respectively) strength. Base Score Rein-
forcement requires that a higher sum of base scores gives a higher strength. For
the last two properties, we have to define the notion of weaker and stronger
attack/support relations between sets.

Definition 8. For any set A,B ∈ G:
A <a B iff Σx∈Att(A)σ(x) > Σx∈Att(B)σ(x);
A <s B iff Σx∈Supp(A)σ(x) < Σx∈Supp(B)σ(x);
A >a B iff B <a A; A >s B iff B <s A.

Then, Attack Reinforcement states that a weaker set of attackers determines
a higher strength whereas Support Reinforcement states that a stronger set of
supporters determines a higher strength.

Any nQBAF satisfies all given properties. This indicates that our LRP-based
nQBAFs may align with human reasoning.

Proposition 1. nQBAFs under LRP-based semantics satisfy Properties 1–12.

Proof. We will make use of Lemmas 1-3 in the Appendix.

Property 1. Any group of arguments in G represents a single node. From Defini-
tion 7, the strength of this group is the sum of that of its members. We can view
members as contributions this node receives from all nodes in the next layer.
So overall, the total sum is the relevance score of this node. This also holds for
the output node of interest by Definition 7 and our choice of LRP. By conserva-
tive properties of LRP, this sum is equal to the sum of contributions this node
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gives to all the nodes in the previous layer. Since Algorithm 1 constructs a set
of arguments A by considering all the pairs of nodes in adjacent layers, each
contribution must be the strength of a unique argument in the previous layer.
From Lemma 3, any non-attacking and non-supporting argument that does not
represent an output node has zero strength, so the sum can be calculated from
adding strengths of attacking and supporting arguments from the previous layer
altogether. Hence this property is satisfied. ��
Property 2. For an arbitrary group g ∈ G, if Att(g) = Supp(g) = ∅ then by
Property 1 we have σ(g) = 0 + 0 = 0. As γ gives all arguments a base score of
zero, then Σx∈gγ(x) = 0. So σ(g) = Σx∈gγ(x). As g is arbitrary, this is true for
all g ∈ G. ��
Property 3. From Lemmas 1 and 2, any attacker has a negative strength while
any supporter has a positive strength. For any group g ∈ G, if Att(g) �= ∅ and
Supp(g) = ∅ then by Property 1 the strength σ(g) must be negative. As γ gives all
arguments a base score of zero, then Σx∈gγ(x) = 0. Hence σ(g) < Σx∈gγ(x). ��
Property 4. Similar to the proof of Property 3 above, any group g ∈ G that
only has supporters has a positive strength by Property 1, which is more than
Σx∈gγ(x) = 0. ��
Property 5. Take arbitrary g ∈ G and assume σ(g) < Σx∈gγ(x). We have to
show that Att(g) �= ∅. Assume Att(g) = ∅. There are two cases: Supp(g) = ∅
or Supp(g) �= ∅. The first case leads to σ(g) = Σx∈gγ(x) by Property 2, and
the second case leads to σ(g) > Σx∈gγ(x) by Property 4, both of which are
contradictions. Hence Att(g) �= ∅. ��
Property 6. Take arbitrary g ∈ G and assume σ(g) > Σx∈gγ(x). We have to
show that Supp(g) �= ∅. Assume Supp(g) = ∅. There are two cases: Att(g) = ∅
or Att(g) �= ∅. The first case leads to σ(g) = Σx∈gγ(x) by Property 2, and
the second case leads to σ(g) < Σx∈gγ(x) by Property 3, both of which are
contradictions. Hence Supp(g) �= ∅. ��
Property 7. By Property 1, any group with similar attackers and supporters
must have the same strength so this property is satisfied. ��
Property 8. Assume we have two groups with similar sets of attackers and sup-
porters. By Property 7, both groups have the same strength. Since any attacker
has a negative strength (by Lemma 1), adding it to any group reduces the group
strength by Property 1. Hence the property follows. ��
Property 9. Assume we have two groups with similar sets of attackers and sup-
porters. By Property 7, both groups have the same strength. Since any supporter
has a positive strength (by Lemma 2), adding it to any group increases the group
strength by Property 1. Hence the property follows. ��
Property 10. Since every argument has a base score of zero (by our choice of γ),
every group’s sum of base scores is zero so the antecedent is always false. This
property is therefore satisfied. ��
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Property 11. Take two arbitrary groups g1, g2 ∈ G. Assume g1 <a g2 and
Supp(g1) = Supp(g2). We have to show that σ(g1) > σ(g2). Since g1 and g2
have the same supporters, Σx∈Supp(g1)σ(x) = Σx∈Supp(g2)σ(x). As g1 <a g2,
then Σx∈Att(g1)σ(x) > Σx∈Att(g2)σ(x). By Property 1, σ(g1) > σ(g2) and this
property is satisfied. ��
Property 12. Take two arbitrary groups g1, g2 ∈ G. Assume Att(g1) = Att(g2)
and g1 >s g2. We have to show that σ(g1) > σ(g2). Since g1 and g2 have
the same attackers, Σx∈Att(g1)σ(x) = Σx∈Att(g2)σ(x). As g1 >s g2, then
Σx∈Supp(g1)σ(x) > Σx∈Supp(g2)σ(x). By Property 1, σ(g1) > σ(g2) and this
property is satisfied. ��

5 Empirical Study

We apply our nQBAF variant as an underpinning argumentation framework for
explaining a neural network-based image classifier. However, the network consists
of several layers of multiple nodes, so the resulting argumentation framework will
be too large to comprehend. To resolve this issue, we simplify the nQBAF variant
further by grouping groups of arguments together. As each group of arguments
has its well-defined strength, it can be treated as another type of argument
that can be grouped together in a manner similar to its underlying arguments.
Accordingly, all the dialectical properties are still satisfied by this additional
layer of grouping. This double-layer grouping idea is, in essence, equivalent to
grouping nodes of a neural network together. This idea is also exhibited in two
approaches, namely deep argumentative explanation (DAX) [1] and the approach
in [13] by Google. In this paper, we apply the LRP-based semantics on both
approaches, each of which generates a separate set of explanations. We then
analyse the obtained explanations qualitatively.

5.1 DAX Basics

DAX [1] is a general methodology for building local explanations (i.e. input-based
explanations) for a neural network outputs. Unlike other explanation methods
which are only based on inputs (and thus can be deemed to be flat), DAX takes
account of the hidden layers too. DAX is based on extracting an argumentation
framework from a neural network; explanations are then drawn from the frame-
work, represented in a comprehensible format to humans. The extraction of the
argumentation framework requires the choice of a semantics (for determining the
strength of arguments) directly matching the behaviour of the neural network.

Here we apply DAX using our LRP semantics at its core. Also, we choose
nQBAFs as the argumentation framework underpinning DAXs. We may theoret-
ically achieve a full (local) explanation by viewing the entire nQBAF extracted
from a neural network. However, the explanation would be too large for complex
networks, therefore too complicated for humans to comprehend. To make things
human-scale, we only consider a fragment of the nQBAF, in the spirit of [1], as
well as grouping groups of arguments representing a single node (i.e. grouping
nodes) together, and visualise the grouping as an explanation.
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5.2 The Basics of Google’s Method

Google’s method [13] combines feature visualisation (i.e. what is a neuron looking
for?, see [12]) with attribution (i.e. how does a specific node contributes to the
output?) to generate a local explanation for a neural network output. We use the
implementation of this method available at [7], changing the attribution method
from a linear correlation to LRP. We leverage on the existing implementation’s
choices for visualisation.

5.3 Settings

For both methods, we aim to explain a Keras VGG16 model [16] (with linear
activation function for the output layer) pretrained on the ImageNet dataset [5].
Since the whole model is too large, we only consider the last convolutional layer,
explaining what the layer prioritises in a given image. We test our method in
combination with DAX, comparing it to Google’s method, on three images: a
police van from [19], a barbell from [18], and a diaper from [20]. In all cases, we
use the output node with maximum activation as the output class, with such an
activation referred to as the output prediction.

To generate explanations using DAX, we modify the code from the ArgFlow
library [4] and apply to each of the three images. For each explanation, the size of
each image illustrates the attribution thereof towards the output class, with red
and green arrows depicting attacking and supporting the output class prediction
respectively.

For Google’s approach, we modify the code from [7] which is one of the
Colaboratory notebooks in [13]. We then apply the code to the three images,
each results in the set of images indicating parts of the original image. Each
number below each factor refers to how much attribution each component has
towards the output prediction. The arrow sizes also reflect these attributions.

5.4 DAX Vs Google Comparisons

Image 1: Police Van. Explanations from both methods (as shown in Fig. 2)
indicate that the model focuses mostly on the background and the red stripe
of the van. There are some subtle differences between them mainly with the
strength for each factor, but their factors are quite similar. However, an inter-
esting point is that DAX considers the siren light of the van as one of the top
six factors contributing to the output class prediction (according to the right-
most image of Fig. 2a) while Google’s approach does not present this (arguably
important) factor.

Image 2: Barbell. According to Fig. 3, both methods explain that the model
focuses on the plates and the background. However, DAX considers the plates to
contribute to the prediction more than the background, while it is the opposite
for the Google’s explanation. Somewhat counter-intuitively though, DAX con-
siders the plates to both attack (the fourth image from the right of Fig. 3a) and
support (the rightmost image from the right of Fig. 3a) the class prediction, even
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(a) The DAX approach

(b) Google’s approach

Fig. 2. Explanations given using (a) the DAX approach (with attacks in red and sup-
ports in green, either indicated in the filters or as arrows, and the size of arguments
for the filters indicating their dialectical strength, see [1] for details) and (b) Google’s
approach for the police van image with the predicted class police van (with arrows
indicating support, and the size of arrows representing the LRP values). The police
van image source is (https://bit.ly/3Fi1oqx). (Color figure online)

though the attacking argument (the fourth image from the right) is much less
strong. If the DAX is faithful to the model, then this incongruence may result
from an incongruence in the model.

Image 3: Diaper. From Fig. 4, both methods indicate that the model focuses
on other things instead of the diaper. The DAX in Fig. 4a shows that the model
focuses on the baby instead of the diaper. It even indicates that the diaper attacks
the prediction of the class itself. In contrast, Google’s explanation (Fig. 4b) indi-
cates that the model focuses on the background and the diaper, giving the baby
lower attributions.

https://bit.ly/3Fi1oqx
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(a) The DAX approach

(b) Google’s approach

Fig. 3. Explanations given using (a) the DAX approach and (b) Google’s approach for
the barbell image with the predicted class barbell. The barbell image source is (https://
amzn.to/3Db2xOQ). (Color figure online)

5.5 Discussion

The comparisons above clearly indicate that even with similar semantics (LRP),
for the same model, explanations vary depending on how the grouping (of argu-
ment groups) is done. Google’s approach seems to take account of the fact that
concepts are usually recognised around particular positions of an image, whereas
DAX only focuses on the concepts. DAX seems to unearth conflicts, with the
same feature both attacking and supporting a prediction. Overall, more experi-
mentation is needed to understand which explanation method is more “faithful”
to the underlying model.

https://amzn.to/3Db2xOQ
https://amzn.to/3Db2xOQ
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(a) The DAX approach

(b) Google’s approach

Fig. 4. Explanations given using (a) the DAX approach and (b) Google’s approach for
the baby image with the predicted class diaper. The diaper image source is (https://
bit.ly/3D8FZya). (Color figure online)

6 Conclusions

We presented a variant of Quantitative Bipolar Argumentation Frameworks
(QBAFs) called neural QBAFs (nQBAFs) and considered how the LRP-based
semantics satisfies the modified dialectical properties for nQBAFs. We also
conducted preliminary experiments explaining an image classifier, by applying
the LRP-based semantics to two approaches: Deep Argumentative Explanation
(DAX) and Google’s approach, and comparing both sets of explanations. DAX
groups argument groups (i.e. nodes) in the same filter together, while Google’s
approach groups them by means of matrix factorisation optimising for activa-
tions. The comparison shows that how argument groups (each representing a
node) are grouped can affect the resulting explanations. As future work, we plan

https://bit.ly/3D8FZya
https://bit.ly/3D8FZya
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to conduct experiments with using nQBAFs for visualisation for text classifica-
tion, in comparison with DAX and Google’s approaches with LRP as well as
other methods, such as smoothgrad [17], deeplift [10], gradcam [15] and TCAV
[8]. Finally, it would be interesting to conduct experiments to assess demands on
the cognitive load for end-users using different (instantiations of) visualisations.
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Appendix: Lemmas for Dialectical Properties Proofs

Lemma 1. Any attacking argument has a negative strength.
∀a ∈ A[∃x ∈ P(A)[a ∈ Att(x)] → σ(a) < 0]

Proof. Take arbitrary a ∈ A. Assume there exists some x ∈ P(A) such that a ∈
Att(x). Since a ∈ Att(x), (a, x) ∈ Att so c−(a, x) is true, meaning Rρ(a)←ρ(x) < 0.
As σ(a) = Rρ(a)←ρ(x) by Definition 7, then σ(a) < 0. ��
Lemma 2. Any supporting argument has a positive strength.

∀a ∈ A[∃x ∈ P(A)[a ∈ Supp(x)] → σ(a) > 0]

Proof. Take arbitrary a ∈ A. Assume there exists some x ∈ P(A) such that
a ∈ Supp(x). Since a ∈ Supp(x), (a, x) ∈ Supp so c+(a, x) is true, meaning
Rρ(a)←ρ(x) > 0. As σ(a) = Rρ(a)←ρ(x) by Definition 7, then σ(a) > 0. ��
Lemma 3. Any argument that neither supports nor attacks any group and does
not represent an output node has zero strength.

∀a ∈ A[∀x ∈ P(A)[(a, x) /∈ Supp ∧ (a, x) /∈ Att] ∧ ρ(a) /∈ Vd+1 → σ(a) = 0]

Proof. This proposition follows immediately from Definition 7. ��
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