amaZon

Piyawat Lertvittayakumjorn*, Daniele Bonadiman, Saab Mansour

pl1515@imperial.ac.uk, dbonadim@amazon.com, saabm@amazon.com
* Work done while interning at Amazon

* Users provide information through slot values to
achieve specific goals.

 The NLU component performs intent classification
(IC) and slot labelling (SL)

A~
‘ Hil My daughter is allergic todairy can you tell me if

the|Cream cheese bagel contains any?

* Intent: GetAllergenlnfo
* Slots: (AllergenType = “dairy”),
(Menultem = “Cream cheese bagel”)

a user

 Formal representation of slot constraints and the
constraint violation detection task

 Benchmarking data for the task, focusing on
constraints on custom slot types

 Three approaches for detecting constraint violations
with experiments

e Some combinations of slot values are not valid for the
task based on the business logic

__

o _ . Intent: Orderltem :
- Can | order a Pl1ZZ4d with Slots: (Menultem = “pizza”),
3 bot user | Qreo cookies on top? ' (Topping = “oreo cookies”)

[Yes, of course! L

gL

a bot developer

e Wouldn'tit be better?

__

Intent: Orderltem |
Slots: (Menultem = “pizza”), |
(Topping = “oreo cookies”)

__

3 bot us oreo cookies on top?

)
ah iCan | order a pizza with
er

Sorry. Pizza and oreo cookies
are not a valid combination.

__

Intent: Orderltem |
Slots: (Menultem = “pizza”), |
(Topping = “mushrooms”)

with mushrooms.

Got it! Your order has
been recorded.

&
@ :
ah iOh, sorry. | meant pizza

a bot developer

(A) Input utterance: Please add one XL fries to my order.
Basic NLU output (Intent classification & Slot labelling):

- Intent: AddToOrder

- Slot labels: Please add [one:Quantity] [XL:MenultemSize] [fries:Menultem] to my order.
Dialogue state: d = (AddToOrder, {Quantity: 1, Menultem: ‘Fries’, MenultemSize: ‘extra large’})

(B) Constraint ¢ = (¢;, cs, ¢;) with ¢; = [AddToOrder], cs = (Menultem, MenultemSize), and ¢; =
((Menultem, =, ‘Cheese burger’) AND (MenultemSize, in, [‘small’, ‘medium’, ‘large’]))
OR ((Menultem, =, ‘Lasagna’) AND (MenultemSize, in, [' medium’, ‘large’]))
OR ((Menultem, =, ‘Fries’) AND (MenultemSize, in, [‘medium’, ‘large’, ‘extra large’]))
OR ((Menultem, =, ‘Pulled pork’) AND (MenultemSize, in, [*small’, ‘medium’]))

Probabilistic Pipeline Approach

* We use the probability distribution (via softmax)

over the candidate entities (including None) to
represent the slot value.

* Violation score = 1 - X Prob of all valid entity

combinations

End-to-End Approach

* MultilabelBERT (# classes = # constraints)

* Applying a linear layer (with sigmoid function) on

top of the embedding vector of [CLS]

* Learn from training data with violation labels

* A dialogue state d violates a constraint c if and only if
dintent € C; and ¢ S dg,:s but d does not satisty ¢;.

 (Given: a bot schema with constraints, a current
utterance, and a conversation history

* Predict: whether the current state of conversation
violates any constraints or not and which constraints
are violated

* Deterministic Pipeline Approach
 IC/SL: JointBERT (Chen etal., 2019)

* (Open) Entity Linking: Also predict ‘None' if the
slot value cannot be linked to any known entity

* Deterministic satisfiability check

« We modified two domains, insurance and fast food
(turn-level annotation), of the MultiDoGO dataset
(Peskov et al., 2019) to support violation detection.

Method Insurance Fast food
(Threshold) Conver. Turn Turn Preci- R Conver. Turn Turn Preci-

: ecall Fl : Recall

correct correct loU sion correct correct loU sion
Deterministic Pipeline Approach (DP)
Exact match 81.6 89.9 924 T71.7 62.1 85.0 30.7 45.0 59.6 59.7 49.1 76.1
Bijaccard 74.9 85.6 88.4 392 70.6 27.1 39.4 52.2 63.0 515 698 408
Levenshtein 73.4 84.6 87.8 409 633 30.2 34.5 48.5 603 51.7 642 433
NLI 72.8 84.3 87.8 436 63.1 334 36.7 49.6 594 462 644 360
NLI (0.8) 80.5 89.6 919 70.1 626 79.6 36.7 48.3 619 582 544 624
Average 74.3 85.0 88.2 423 673 30.8 39.9 52.6 633 50.8 685 403
Average (0.5) 82.2 90.4 925 71.6 639 814 37.4 50.2 635 595 545 654
Probabilistic Pipeline Approach (PP)
Bijaccard 74.1 84.8 88.4 446 669 33.5 37.7 50.8 627 524 673 429
Levenshtein 73.7 84.6 88.0 443 638 339 31.9 46.2 584 51.2 620 435
NLI 70.7 83.1 86.8 440 58.7 352 34.3 47.0 583 490 623 403
NLI (0.8) 70.2 83.8 86.4 609 526 723 36.5 47.9 61.6 584 547 628
Average 73.7 84.7 88.2 451 644 346 35.0 48.7 60.8 52.8 640 450
Average (0.5) 75.4 85.8 89.3 525 57.8 48.1 38.2 50.8 638 59.0 556 63.0
End-to-End Approach (EE)

End-to-End BERT| 83.9 92.1 934 751 76.2 74.1 333 52.0 624 574 60.0 55.1

The pipeline approaches have access to constraints
and are more explainable, but prone to error
accumulation. Meanwhile, the end-to-end approach is
less cumbersome but learns only from data, i.e., have
no access to constraints yet

